Fish prey change strategy with the direction of a threat.
نویسندگان
چکیده
Predation is a fundamental interaction between species, yet it is unclear what escape strategies are effective for prey survival. Classical theory proposes that prey should either escape in a direction that conforms to a performance optimum or that is random and therefore unpredictable. Here, we show that larval zebrafish (Danio rerio) instead use a mixed strategy that may be either random or directed. This was determined by testing classic theory with measurements of the escape direction in response to a predator robot. We found that prey consistently escaped in a direction contralateral to the robot when approached from the side of the prey's body. At such an orientation, the predator appeared in the prey's central visual field and the contralateral response was consistent with a model of strategy that maximizes the distance from the predator. By contrast, when the robot approached the rostral or caudal ends of the body, and appeared in the prey's peripheral vision, the escape showed an equal probability of a contralateral or ipsilateral direction. At this orientation, a contralateral response offered little strategic advantage. Therefore, zebrafish larvae adopt an escape strategy that maximizes distance from the threat when strategically beneficial and that is otherwise random. This sensory-mediated mixed strategy may be employed by a diversity of animals and offers a new paradigm for understanding the factors that govern prey survival.
منابع مشابه
A faster escape does not enhance survival in zebrafish larvae.
An escape response is a rapid manoeuvre used by prey to evade predators. Performing this manoeuvre at greater speed, in a favourable direction, or from a longer distance have been hypothesized to enhance the survival of prey, but these ideas are difficult to test experimentally. We examined how prey survival depends on escape kinematics through a novel combination of experimentation and mathema...
متن کاملWhen Optimal Strategy Matters to Prey Fish.
Predator-prey interactions are commonly studied with an interest in determining the optimal strategy for prey. However, the implications of deviating from optimal strategy are often unclear. The present study considered these consequences by studying how the direction of an escape response affects the strategy of prey fish. We simulated these interactions with numerical and analytical mathemati...
متن کاملThe Dynamical Analysis of a Delayed Prey-Predator Model with a Refuge-Stage Structure Prey Population
A mathematical model describing the dynamics of a delayed stage structure prey - predator system with prey refuge is considered. The existence, uniqueness and bounded- ness of the solution are discussed. All the feasibl e equilibrium points are determined. The stability analysis of them are investigated. By employ ing the time delay as the bifurcation parame...
متن کاملInfluence of fish aggregating devices (FADs) on anti-predator behaviour within experimental mesocosms.
Commercial fishers have used fish aggregating devices throughout the Mediterranean Sea for over 40 years. These devices attract numerous predatory and forage species in both coastal and offshore environments. This study examined the influence of fish aggregating devices on schooling and aggregating behaviour by small forage fish in quasi-natural mesocosms. Anti-predator behaviour was evaluated ...
متن کاملThe Influence of Otolithes ruber Consumption on Prey and Comparison with that Harvested by Fisheries
The Otolithes ruber is considered a valuable fish in the Indo-West Pacific. Estimates of the Q/B ratio and parameters of equations to ‘predict’ Q/B values for O. ruber in northwestern part of the Persian Gulf and the effects of different age-groups (age 1 to 6 year) on prey are presented. The age and food item of O. ruber were recorded on data collected from monthly samplings by bottom tra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings. Biological sciences
دوره 284 1857 شماره
صفحات -
تاریخ انتشار 2017